Contents

1	Intr	troduction and scope	1
	1.1	1 Introduction	1
	1.2	2 Scope	2
	1.3	3 Codes and history	2
	1.4	4 Competency and assessment levels	3
	1.5	5 Definitions and Abbreviations	4
2	Tan	nks and their components: Terminology and materials of construc	tion7
	2.1	1 Tank components	7
	2.2	2 Glossary of terms	9
	2.3	3 Types of storage tanks	10
		2.3.1 Standard atmospheric storage tanks	10
	2.4		
		2.4.1 Ambient conventional storage tanks	17
3	Deg	egradation mechanisms and failure modes	19
	3.1	1 General	19
	3.2	2 Corrosion	19
	3.3		
	3.4	4 Structural failure and/or failure of tank components/appendages	21
	3.5	5 Material fatigue	21
		3.5.1 Storage tanks can be subject to cyclic stresses	
		3.5.2 Bottom-to-shell connection	22
		3.5.3 Floating roofs	23
		3.5.4 Articulated pipe of roof drain systems	23
	3.6	6 Combination of degradation mechanisms and other influences	23
	3.7	7 Incidents, operating outside integrity operating window and eme	rgency situations23
4	Cor	orrosion of tanks	25
	4.1	1 General	25
	4.2	2 Types of corrosion	25
		4.2.1 Uniform corrosion	26
		4.2.2 Pitting corrosion	26
		4.2.3 Crevice / under deposit corrosion	27
		4.2.4 Galvanic corrosion	28
		4.2.5 Stress corrosion cracking (SCC)	29

	4.2.6	Grove corrosion to the annular plate	29
	4.2.7	Microbiologically induced corrosion (MIC)	31
4.3	Corro	sion rates of critical components	32
4.4	Corro	sion of bottom plates	34
	4.4.1	Failure modes	34
	4.4.2	Bottom plate soil side corrosion	34
	4.4.3	Bottom plate product side corrosion	36
4.5	Corro	sion of shell plates	34
4.6	Corro	sion of roof plates	40
	4.6.1	Fixed roofs including roof support structure	40
	4.6.2	Floating roofs including supporting legs	
4.7	Corro	sion Under Insulation (CUI)	43
4.8	Nozzl	es and reinforcement plates / tank mountings	47
	4.8.1	Shell nozzles	47
	4.8.2	Roof nozzles	48
5 Ge	neral in	spection techniques and interpretation of inspection datadata	49
5.1	Refere	ences	49
	5.1.1	Inspection and maintenance	49
	5.1.2	Assessing the tank norm or standard	53
	5.1.3	Fit-for-purpose analysis of storage tanks	56
	5.1.4	Storage tank change of service considerations	56
5.2	Inspe	ction	57
	5.2.1	General	57
	5.2.2	Operator observations	59
	5.2.3	Routine and detailed visual inspections	60
	5.2.4	In-service inspection (non-intrusive)	61
	5.2.5	Out-of-service inspection	62
	5.2.6	Safety considerations during inspection	63
5.3	Inspe	ction techniques and methodolgy	64
	5.3.1	General	64
	5.3.2	Phased Array Ultrasonic Testing (PAUT)	
	5.3.3	Alternating Current Field Measurement (ACFM)	66
	5.3.4	Tank shell measurement	68
	5.3.5	Tank bottom measurement	69
	5.3.6	Tank roof measurement	
	5.3.7	Measurement of nozzles and manhole neck plates	
5.4		ation of shell inspection data	
5.5		m localised corrosion	
5.6	Guida	nce on robotic inspection of tank floors	79
5.7	Usen	f drones and RPAS (Remotely Piloted Aircraft Systems) for inspection	80

6	Tan	k found	dations	83
	6.1	Gener	al	83
		6.1.1	Introduction	83
		6.1.2	Failure modes of tank foundations	84
	6.2	Soil se	ettlement	84
		6.2.1	Settlement under loads	84
		6.2.2	Consolidated settlement	84
	6.3	Effect	s of soil settlement	85
		6.3.1	Even (uniform) settlement	85
		6.3.2	Tank shell settlement into the foundation	85
		6.3.3	Difference in soil settlement between centre and periphery of the tank	86
		6.3.4	Uneven settlement	89
		6.3.5	Edge settlement	90
		6.3.6	Planar tilt	92
		6.3.7	Differential shell settlement around circumference	92
		6.3.8	Evaluation and measurements for shell out of roundness	94
	6.4	Leaka	ge	94
	6.5	Maxin	num tolerances and limits for settlement and out-of-verticality of tank shell	95
		6.5.1	Out-of-verticality of the tank shell	95
		6.5.2	Edge Settlement	98
		6.5.3	Differential settlement	99
		6.5.4	Sagging/centre-to-edge bottom settlement	102
		6.5.5	Bottom ripples	103
	6.6	Re-lev	relling of tank foundations	103
	6.7	Tank I	ifting operations	104
		6.7.1	Preliminaries	
		6.7.2	Tank lifting	105
		6.7.3	Wind loading	105
		6.7.4	Safety measures against wind damage	106
	6.8	Repai	r/modification methods - some typical examples	107
7	Tan	k botto	ms (with or without annular plates)	109
	7.1		al	
	7.2		uction	
	7.3	Deter	mination of floor thickness and condition	113
	7.4	Reject	ion limits	113
		7.4.1	Floor area	113
		7.4.2	Annular area	114
		7.4.3	Annular projection	
	7.5 I	Bulges	and depressions in tank bottom plates	
		_	ic protection	
			nodification methods - some typical examples	

8	Tan	k shells		119
	8.1	Gener	al	119
	8.2	Deterr	mination of effective shell plate thickness and condition	121
	8.3	Reject	ion limits for shell plates	121
		8.3.1	Liquid load and vapour pressure	122
		8.3.2	Wind and vacuum loads	124
		8.3.3	Roof loads	126
		8.3.4	Pit corrosion assessment	127
	8.4	Minim	num thickness calculations for riveted tank shells	128
	8.5	Top w	rind girder and intermediate wind stiffeners	128
		8.5.1	Shell top wind girders	128
		8.5.2	Intermediate wind stiffeners	129
	8.6	Buckli	ng and deformation problems of tank shells and top wind girders	132
		8.6.1	Buckling and deformation problems of tank shells	132
		8.6.2	Shell top wind girders	135
	8.7	Manh	oles, nozzles and connecting piping	136
		8.7.1	Shell manholes and nozzles	136
		8.7.2	Connecting piping	137
		8.7.3	Rejection limits shell nozzles	138
	8.8	Clean-	-out doors and openings	139
		8.8.1	Clean-out doors	139
		8.8.2	Clean-out openings	139
	8.9	Earthi	ng	141
	8.10	Repair	/modification methods - some typical examples	142
9	Stai	nless st	teel tanks	145
	9.1	Introd	uction	145
		9.1.1	Stainless steels	145
	9.2	Prope	rties of stainless and duplex steels	145
		9.2.1	E-modulus	
		9.2.2	Ductility	146
		9.2.3	Yield strength	146
	9.3	Corros	sion properties of stainless steel	146
		9.3.1	General corrosion	147
		9.3.2	Localised corrosion	147
		9.3.3	Pitting corrosion	147
		9.3.4	Stress corrosion cracking	147
		9.3.5	Corrosion under insulation	148
		9.3.6	Erosion/chemical corrosion	148
		9.3.7	Galvanic corrosion	148
	9.4	Settle	ment	148

	9.5	Inspec	tion	148
		9.5.1	Inspection general corrosion	148
		9.5.2	Inspection – pitting corrosion and stress corrosion cracking	149
	9.6	Inspec	tion intervals	149
	9.7	Mainte	enance and repair	149
		9.7.1	Weldability	149
		9.7.2	Etching and passivation	149
		9.7.3	Distortion caused by repairs	149
		9.7.4	Hydrotesting and post repair treatment	
		9.7.5	Post repair treatment	150
10	Fixe	ed roof	s (cone roofs and dome roofs)	151
	10.1	Genera	al	151
	10.2	Roof n	nanholes and nozzles	152
	10.3	Roof v	ents (ventilation of tanks) and emergency relief vents	153
		10.3.1	The functioning of roof vents	153
		10.3.2	Venting requirements for fixed roof tanks	154
		10.3.3	Inspection and maintenance of roof vents	156
		10.3.4	Possible ventilation problems	160
		10.3.5	Flame arresters	162
		10.3.6	Pressure test of the fixed roof	163
		10.3.7	Temporary closure of openings in open vents or pressure–vacuum valves	
			during operation	164
		10.3.8	Protection against static electricity and lightning	164
	10.4	Colum	n supported roofs	164
		10.4.1		
		10.4.2	Tank jacking or lifting	165
		10.4.3	Column design	166
			rane (self-supporting) roof	
	10.6	_	dation limits for fixed roofs	
			Self supported fixed roof with supporting structure	
			Roof supporting structure	
		10.6.3	Self-supporting fixed roof without supporting structure	169
	10.7	Fitness	for service assessment	169
			al Floating Covers (IFCs)	
	10.9	Repair,	/modification methods	174
11	Floa	ting ro	ofs	177
	11.1	Types.		177
		, .	General	
		11.1.2	Pontoon type floating roofs	178
		11.1.3	Double-deck floating roofs	179
		11.1.4	Special roofs such as buoy type and radially reinforced roofs	180

11.	2 Degradation limits	181
	11.2.1 General corrosion	181
	11.2.2 Pit corrosion	182
11.	3 Equipment on External Floating Roofs	183
	11.3.1 Roof drains	183
	11.3.2 Floating roof seals	188
	11.3.3 Roof support legs	197
	11.3.4 Floating roof venting	199
	11.3.5 Rolling ladders	200
	11.3.6 Earthing of floating roofs	201
11.	4 Guidelines for the operation of floating roofs	202
	11.4.1 Introduction	202
	11.4.2 Before the roof is taken into service	202
	11.4.3 During the first month of operation	202
	11.4.4 During operation	203
	11.4.5 Before landing the roof	204
	11.4.6 Roof standing on its supports	204
	11.4.7 Recommended filling rates for floating roof tanks	204
	11.4.8 Ballooning of single-deck floating roof	205
11.	5 Possible problems with EFR buoyancy	207
	11.5.1 Leaking pontoon compartments	207
	11.5.2 Cracking in centre deck due to wind loading	
	11.5.3 Out-of-roundness tolerances	
11.	6 Repair/modification methods	209
	11.6.1 Overplating	210
11.	7 Snow load on External Floating Roof	
	11.7.1 Inspection history	
	11.7.2 Removal of the snow	
	11.7.3 Operation of the tank	211
11.	8 Aluminium dome roofs	211
12 Tar	nk appendages	213
12.	1 Shell and roof nozzles	213
	2 Floating suction lines	
	12.2.1 Design	
	12.2.2 Operational experiences	
	12.2.3 Inspection	
12.	3 Ladders, stairways, platforms/railings and lighting	216
	4 Side entry mixers	
	5 Tank instrumentation	
	12.5.1 General/records	218
	12.5.2 Instrument and component failure due to external corrosion	219

	12.5.3	Electronic instruments	219
	12.5.4	Tank cooling and fire protection system	220
13	3 Tank coatin	ngs	221
		uction	
		al coating systems	
	13.2.1	General	221
	13.2.2	Bottom	222
	13.2.3	Shell and roof	222
	13.3 Interna	al coating systems	223
	13.3.1	General	223
	13.3.2	Bottom	225
	13.3.3	Shell and Roof	225
	13.4 Repair	/modification methods - some typical examples	225
14	4 Tank insula	tion	227
15	5 Hydrotestii	ng	231
	15.1 Genera	al	231
	15.2 Hydro	static testing after repair, re-siting and modification	233
	15.2.1	Full hydrostatic test	233
	15.2.2	Partial hydrostatic test	233
	15.2.3	No hydrostatic test	233
	15.2.4	No hydrostatic test (exemptions)	234
	15.3 Requir	ements for hydrotesting	237
	15.3.1	Pipe connections	237
	15.3.2	Water quality	237
	15.3.3	Test temperature	237
	15.3.4	Filling rates	237
	15.3.5	Maximum filling height	239
	15.3.6	Holding time	239
	15.3.7	Emptying after hydrotest	239
	15.4 Settler	ment monitoring	239
16	6 Resiting of	vertical tanks	241
	16.1 Genera	al	241
	16.2 Movin	g using a crane with spreader beam	241
	16.3 Movin	g on rail tracks	241
	16.4 Movin	g by air-cushion method	242
	16.5 Movin	g by floating	242
	16.6 Movin	g by self-propelled trailers	243
	16.7 Testino	g requirements	243

17 Probab	ilistic Preventive Maintenance (PPM) for tanks	245
17.1 Int	roduction	245
17.2 lns	spection and Maintenance based on risk	246
	.2.1 Introduction to risk management	
17	.2.2 Asset management plan	246
17	.2.3 Maintenance Maturity	246
17	.2.4 Life Cycle Costing	249
17	.2.5 Plan-Do-Check-Act Cycle of Maintenance	251
17	.2.6 Set up (Plan)	252
17	.2.7 Execution (Do)	252
17	.2.8 Evaluation (Check)	252
17	.2.9 Closing the loop (Act/Adjust)	252
17.3 Int	roduction to PPM	253
17.4 Ris	sk Based Inspection (RBI)	254
17	.4.1 Introduction	254
17	.4.2 Methodology	256
17	.4.3 Probability of a specific failure	257
17	.4.4 Consequences of a specific failure	258
17	.4.5 Risk rating	259
	.4.6 Determination of next required inspection datedate	
17	.4.7 RBI, THE STEPS	263
17	.4.8 The steps 5 and 6: Calculation of interval before next inspection	265
17	.4.9 Asset management plans	266
17.5 Re	liability Centred Maintenance (RCM)	267
17	.5.1 Tank facility Maintenance Approach	267
17	.5.2 Set up Asset Register	268
17	.5.3 Failure Modes & Effect (Analysis) FMEA	271
17	.5.4 Criticality (Analysis)	274
17	.5.5 Risk mitigation	277
17	.5.6 Defining mitigating actions	277
17	.5.7 Monitoring strategy	285
	.5.8 Reliability & Availability	
	.5.9 Maintenance Plan	
17	.5.10 Monitoring maintenance performance	290
17.6 PP	M process	291
17.7 PP	M implementation	296
17	.7.1 Introduction	296
17	.7.2 Resources	
17	.7.3 Minimum requirements for PPM	297
17	7.4 Involvement of regulatory hodies and competent authorities	299

18 Mot	thballing	301
18.1	Introduction	301
	18.1.1 Safety precautions	302
18.2	Protection Procedure	302
	18.2.1 6 to 12 Months	302
	18.2.2 12 to 18 Months	302
	18.2.3 More than 18 Months	302
	18.2.4 Floating tank roofs	302
18.3	Reducing the Risk of Internal Degradation	303
	18.3.1 Instrument Air Conditions	303
	18.3.2 Inerting the Tank	303
18.4	Reducing the Risk of External Corrosion	304
Appen	dix A Tank assessment, records and reports	307
A.1	Tank records	307
A.2	Minimum allowable thickness and shell-to-edge projection of annular plates	308
Appen	dix B Inspection checklists and frequencies	311
B.1	Inspection frequencies	311
B.2	Tank inspection checklist	316
B.3	Example NDT inspection sheets	332
Appen	dix C Typical repair solutions	361
C.1	Tank jacking	361
C.2	Typical repair solutions for tank foundations	369
C.3	Typical repair solutions for tank bottoms	370
C.4	Typical repair solutions for tank shells	374
C.5	Tank coating and lining	377
Appen	dix D Sample calculations	385
D.1	Stability of corroded tank	385
D.2	Venting	393
D.3	Floating roof seal design	398
D.4	Remaining life of a storage tank	401
D.5	Sample calculation of a corroded landing leg	403
D.6		
Appen	dix E Probabilistic Preventive Maintenance (PPM)	415
E.1	Asset records	415
E.2	Tank components and their typical failure modes	415
E.3	RBI calculation of the interval between inspections	422
E.4	Model calculations for determining interval before next required inspection	433
E.5	Methodology Reliability Centred Maintenance	455

E.6	The RCM steps	455		
E.7	Model calculation for assessing consequence factor	464		
E.8	PPM appraisal checklist	467		
E.9	Determining the required maintenance tasks belonging to dominant failure mechanisms of tank components	472		
Appen	dix F Reduction in Young's Modulus and Applicable Allowable Stresses in Steel			
	components at elevated temperatures	499		
Appen	dix G Self-supporting aluminium roofs	501		
G.1	Introduction	501		
G.2	Risks Associated with Self Supported Aluminium domesdomes	502		
G.3	Typical failure modes for aluminium domes	503		
G.4	Design Considerations	504		
G.5	Dome construction			
G.6	Aluminium dome inspection and maintenance requirements	514		
Appen	dix H (Informative) FEA Requirements regarding Fit-for-Service assessments	519		
H.1	General	519		
H.2	The FEA Report	519		
Appen	dix I (Informative) Supplementary method for assessing floating roofs			
	and fixed roofs	521		
1.1	Introduction	521		
1.2	Allowable and appearing stresses under operational conditions	521		
1.3	Allowable stresses to be used for a Fit-for-Purpose analysis of floating roofs and			
	fixed roofs according to this Publication	524		
1.4	Verification of floating roofs	530		
1.5	Verification of fixed roofs	538		
Appen	dix J(Informative) Tank turnaround procedure	541		
J.1	Introduction	541		
J.2	Tank turnaround organisation	541		
J.3	Workflow	542		
J.4	In service scope vs out of service scope	545		
J.5	Summary	546		
Refere	nces	547		
Bibliog	ıraphy	549		
EEMUA	Na Publication: Feedback form	552		
EEMUA	EEMUA E-Learning and Publication Catalogue			

List of Figures

Figure 2-1	Types of fixed roof tanks (BS 2654 and EN 14015)	11
Figure 2-2	Typical fixed roof tank	
Figure 2-3	Typical floating roof tank with pontoon floating roof	14
Figure 2-4	Typical floating roof tank with double deck floating roof	15
Figure 2-5	Typical open top tank with geodesic dome roof	16
Figure 3-1	Shell to floor joint	
Figure 4-1	Pitting Corrosion	26
Figure 4-2	Crevice corrosion between roof supporting structures and roof plates in	
3	the vapour space of a tank that progressed to the top side of roof plates, even	
	leading to holes	27
Figure 4-3	Corrosion at flange surfaces	
Figure 4-4	Under deposit corrosion tank annular projection	
Figure 4-5	An example of groove corrosion	
Figure 4-6	External bottom corrosion, caused by impurities in and debris on the top layer	
3	of the tank foundation	35
Figure 4-7	Internal shell corrosion caused by the low conductivity of the stored product	37
Figure 4-8	Internal shell corrosion caused by long term water contact between the	
3	rim seal and the shell when no roof movements have occurred	39
Figure 4-9	Progressive corrosion on a primary wind girder caused by stagnant water	
3	that could not be drained	40
Figure 4-10	Example of vapour space corrosion	
Figure 4-11	Corrosion areas for roof supporting legs	
Figure 4-12	Corrosion of landing legs of floating roofs	
Figure 4-13	CUI on tank shell and top side of a secondary wind girder due to water ingress	
<i>J</i>	in the insulation system	44
Figure 4-14	External shell corrosion by CUI, away from the tank bottom when lower	
<i>J</i>	section of insulation is not installed	45
Figure 4-15	An example of corrosion under insulation	
Figure 4-16	Non-conforming weatherproofing material as cover on roof insulation	
Figure 4-17	Example of dead leg nozzles	
Figure 4-18	Leaking tell-tale hole in reinforcement plate	
Figure 4-19	Nozzle with PW attached	
Figure 5-1	Example of tank built in 1900 and still operational (courtesy of Shell)	
Figure 5-2	The four activities of tank maintenance	
Figure 5-3	The 7 steps in the out-of-service period	
Figure 5-4	Effects of mal-operation, product change or severe weather on ladder stability	
Figure 5-5	Comparison of a phased array probe with conventional UT	
Figure 5-6	Detection of flaws using phased array UT	
Figure 5-7	Detection of defects using ACFM	
Figure 5-8	Locations for bottom to shell connection UT measurements	
Figure 5-9	Ultrasonic measurements for drain sumps	
Figure 5-10	Typical water draw-off sump layout	
Figure 5-11	Areas to be scanned on the pontoon	
Figure 5-12	Areas to be scanned on roof support sleeves	
Figure 5-13	Dimensions of reinforcement to be measured	
Figure 5-14	Positions for UT thickness measurements on roof nozzles	
Figure 5-15	A typical area of corrosion	
Figure 5-16	An example of a pitted area	
~	•	

Figure 5-17	Robotic inspection feasibility	80
Figure 6-1	Tank on piled foundation	
Figure 6-2	Tank shell settlement into the tank foundation	
Figure 6-3	Typical effect of tank loads on soil settlements	
Figure 6-4	Difference in settlement between centre and periphery	
Figure 6-5	A ripple in a tank bottom	
Figure 6-6	Typical location of a ripple in a tank bottom	89
Figure 6-7	Local uneven settlement under the tank shell	
Figure 6-8	Edge settlement	
Figure 6-9	Edge settlement due to penetration of the shell into the foundation	
Figure 6-10	Insufficient width of tank pad shoulder	
Figure 6-11	Edge settlement due to a damaged or eroded tank pad shoulder	
Figure 6-12	Tilting of a tank	
Figure 6-13	Differential settlement	
Figure 6-14	Out of verticality	
Figure 6-15	Edge settlement	
Figure 6-16	Multi-lobed and twisting patterns in settlement behaviour	
Figure 6-17	Differential settlement fixed roof tank	
Figure 6-18	Sagging	
Figure 6-19	Maximum ripple aspect ratio	
Figure 6-20	A 48 metres diameter tank jacked up 2.5 metres above the foundation	
Figure 6-21	Example of wind damage during construction	
Figure 6-22	Example of tirfors and cleat to prevent wind damage	
Figure 7-1	Flowchart assessing fit-for-purpose of tank bottom	
Figure 7-2	Rejection limits annular projections	
Figure 7-3	Rejection limits throat thickness fillet weld	
Figure 7-3	Examples of severe corrosion of tank foundations and annular plate	
Figure 7-5	Bulges/depressions without sharp edges supported by the tank foundation	
Figure 7-5	Bulges not filled with foundation material	
Figure 8-1	Flowchart assessing fit-for-purpose of tank shell	
Figure 8-2	Holding down bolts	
Figure 8-3	Main wind girder on a floating roof tank	
Figure 8-4	Intermediate wind girder on fixed roof tank	
Figure 8-5	Intermediate wind girder of fixed foot tark	
Figure 8-5	Intermediate wind girder with drain modse noie	
Figure 8-7	Fixed roof tank with buckled top courses due to wind gusts	
Figure 8-8	Wind induced buckling below wind girder	
Figure 8-9	Buckling due to downward load on roof and external pressure on shell	
Figure 8-10	Fixed roof tank with internally corroded	
Figure 8-11	Elephant's foot buckling induced by an earthquake	
Figure 8-12	Empty floating roof tank collapsed during a cyclone	
Figure 8-13	Rotation of nozzle flange induced by outward bulging of shell	
Figure 8-14	Expansion bellows in pipe connection to tank nozzle	
Figure 8-15	Examples of clean out openings	
Figure 8-15	Upstand of a clean out opening protected from damage	
Figure 8-17	Corrosion repair flow chart	
Figure 10-1	Detail of normal roof plate weld	
Figure 10-1	Cone roofs	
Figure 10-2	Example of crevice corrosion	
Figure 10-4	Breathing loss of fixed roof tanks	
riguic 10 T	DICULTING 1000 OF TIACO FOOT WITHOUT MITTON	

Figure 10-5	Filling loss of a fixed roof tank	
Figure 10-6	Weak roof-to-shell connection (frangible roof joint)	
Figure 10-7	Fixed roof tank damaged due to inadequate venting	157
Figure 10-8	A combined pressure vacuum valve	
Figure 10-9	Weight loaded emergency vents	159
Figure 10-10	Collapsed fuel tank: vents clogged by frozen rain on the wire mesh	161
Figure 10-11	Roof plate blown off due to a boil over when water entered a hot oil tank	161
Figure 10-12	Collapsed tank caused by blocked vent during maintenance	162
Figure 10-13	Examples of clogging vents	163
Figure 10-14	Column supported cone roof	164
Figure 10-15	Typical column support sections	165
Figure 10-16	Flowchart assessing fit-for-purpose of tank roof	170
Figure 10-17	Internal floating covers and Example of an installation of a typical floating	
	cover in a fixed roof storage tank	
Figure 10-18	Direct, pontoon cable suspended and cable suspended IFCs	173
Figure 10-19	Modified roof-to-shell connection	175
Figure 11-1	Rainwater load on the centre deck of a pontoon with drain inoperative	178
Figure 11-2	Design of a pontoon roof (Capable of floating with centre deck and	
	two bulkheads punctured)	
Figure 11-3	Rainwater load on the upper deck of a double-deck with drain inoperative	179
Figure 11-4	Design of a double deck roof	
Figure 11-5	Example of buoy type radially reinforced roof	180
Figure 11-6	Types of primary roof drains	183
Figure 11-7	Examples of hose guards	186
Figure 11-8	Flexible hose joint	
Figure 11-9	Typical emergency roof drain	
Figure 11-10	Rim seals	
Figure 11-11	Various types of liquid mounted mechanical shoe seals	
Figure 11-12	Typical liquid mounted primary foam and tube seal	
Figure 11-13	Typical vapour mounted seals	
Figure 11-14	Mechanical shoe seal with shoe mounted and rim mounted secondary seal	
Figure 11-15	Rim seal damage	
Figure 11-16	Rim seal damage	
Figure 11-17	Replacement primary seal	
Figure 11-18	Roof and seal damage due to earthquakes	
•	Floating roof legs	
Figure 11-20	Pads welded to the tank floor to prevent damage from legs grounding	
Figure 11-21	Slope of roof support legs	
	Operating principle of an automatic bleeder vent	
	A failed floating roof ladder	
Figure 11-24	Gauge observation platform	
Figure 11-25	Trapped vapour under roofs	
Figure 11-26	Burping of a single deck floating roof	
Figure 11-27	Example of effects of burping	
Figure 11-28	Roof leg assembly for the centre deck of single deck floating roof	
Figure 11-29	Potential effect of over plating floating roof centre deck	
Figure 11-30	Typical geodesic aluminium dome on a fuel tank	
Figure 12-1	Side-entry mixers	
Figure 12-2	Radar gauges on tank roofs	
Figure 12-3	Fixed foam protection system	220

Figure 13-1	Inspection of the tank bottom and lower shell coating	223
Figure 14-1	Examples of Corrosion Under Insulation (CUI)	
Figure 15-1	Selection diagram for hydrostatic testing of vertical tanks	
Figure 17-1	Maintenance Effort vs. Total Cost of Maintenance	
Figure 17-2	Five Maintenance Maturity Levels	
Figure 17-3	Life cycle costings process	
Figure 17-4	Plan-Do-Check-Act Cycle	
Figure 17-5	Deliverables of PPM tanks: an integrated approach	
Figure 17-6	General concept of a RBI process	
Figure 17-7	Typical rate of settlement of tank foundations	
Figure 17-8	Risk plot when using (semi-) quantitative methods	
Figure 17-9	Example of a 4x4 PPM risk assessment matrix	
Figure 17-10	Expected degradation of a specific failure mode	
Figure 17-11	Degradation plot (bottom plate thickness vs time)	
Figure 17-12	Risk assessment matrix used in EEMUA PPM methodology	
Figure 17-13	Maintenance Approach	
Figure 17-14	Schematic of a tank pit with the names of different components	
Figure 17-15	Basic example of asset hierarchy	
Figure 17-16	Example of failure cause	
Figure 17-17	Example of the RCM Risk Matrix	
Figure 17-18	Schematics of ETTF, ETBF, ETTR and ETTD	
Figure 17-19	Process for setting up mitigating actions	
Figure 17-20	Six main failure patterns	
Figure 17-21	Difference life & Useful life	
Figure 17-22	The P-F curve	
Figure 17-23	Net P-F interval (P-F interval going from P to F)	
Figure 17-24	Different potential failures which can precede one failure mode	
Figure 17-25	Simple fault tree analysis	
Figure 17-26	Example of a PPM process	
Figure 18-1	Example of a floating roof tank mothballed for > 10 years	
Figure 18-2	Mothballing process	305
Figure A-1	Original thickness according to BS 2654, EN14015 and API 650	309
Figure A-2	Minimum allowable thickness and shell/edge projection of bottom plates	
Figure C-1	Examples of tank jacking	362
Figure C-2	One stage jacking	363
Figure C-3	Two stage jacking	365
Figure C-4	Sequential tank jacking	366
Figure C-5	Two stage jacking of floating roof tank	367
Figure C-6	Typical welded-on patch plate	370
Figure C-7	'K' seam where new annular plate radial welds cross tank shell	372
Figure C-8	Welding sequence for annular plate replacement	372
Figure C-9	Welding sequence for shell-to-bottom junction	373
Figure C-10	Explanation of welding sequence for shell-to-bottom junction	
Figure C-11 a	Repair solutions for shell plates (continued next page)	374
Figure C-11 b	Repair solutions for shell plates (continued from previous page)	375
Figure C-12	Sizes of cuts and insert plates	
Figure C-13	Welding sequences for horizontal and vertical welds	
Figure C-14	Degradation stages and reference numbers	
Figure D-1	'As-built' tank shell transformations	
Figure D-2	'Corroded' tank shell transformations	392

Figure D-3	Perfectly rounded tank, rim space 200 (-125 +125) mm	. 399
Figure D-4	Oval tank, rim space 200 (-125 +125)	. 400
Figure D-5	Oval tank, rim space 200 (-75 +225)	. 400
Figure D-6	Corrosion rate curve	. 402
Figure D-7	Location of roof supports	. 403
Figure D-8	Example roof support dimensions	. 404
Figure D-9	Example sleeve dimensions	. 406
Figure D-10	Kt values for a lug. Results of Frocht and Hill. Comparison to an open hole	.406
Figure D-11	Design loads; ultimate limit state	.407
Figure D-12	Example roof support dimensions	. 407
Figure D-13	Example sleeve dimensions	
Figure D-14	Kt values for a lug. Results of Frocht and Hill. Comparison to an open hole	
Figure D-15	Design loads; ultimate limit state	
Figure E-1	Inspection interval calculation process per degradation mechanism	
Figure E-2	Flow chart of risk assessment calculation model for RCM	
Figure G-1	Typical failure modes	
Figure G-2	Dome support locations	
Figure G-3	Catastrophic dome failure due to snow load	
Figure G-4	Typical sliding support with grounding cable	
Figure G-5	Typical fixed support with external tension ring	
Figure G-6	Dome sealing types	
Figure G-7	Possible leakage due to bending batten bar	
Figure G-8	Example of properly and poorly applied caulking	
Figure G-9	Dome construction on tank floor	
Figure G-10	Manual lifting (left), crane lifting (mid) and automatic tirfor lifting (right)	
Figure G-11	Some common issues associated with dome supports	
Figure G-12	Some examples of failures affecting operational integrity	
Figure I-1	Area of weld detail affected by the joint efficiency factor	
Figure I-2	Flow chart to use for assessing degradation limit of roof plates	. 525
Figure I-3	Flow chart to use for assessing degradation limit of members	50 6
	of roof supporting structures	
Figure I-4	Stress/elongation diagram of steel valid under design conditions	
Figure I-5	Stress/elongation diagram of steel valid for a fit-for-purpose analysis	.528
Figure I-6	Typical example of additional back pressure to roof components by	
	(i) higher attachment point of centre deck to inner rim plates and	F 2 1
F:	(ii) slope of centre deck as well as (iii) slope of bottom plates of pontoons	
Figure I-7	Typical example of hydrostatic pressures on rim plates to be taken into account.	.531
Figure I-8	Hydrostatic pressure against bulkhead and inner rim plates of	- -2-2
F:	punctured pontoons	
Figure I-9	Typical arrangement of accumulated water on centre deck	
Figure I-10	Typical arrangement of accumulated water on a double deck roof	. 534
Figure I-11	Typical example of location of roof legs and contributed area per ring	E 2 E
Eigura I 12	of roof legsEccentricity of a landing leg (roof support)	
Figure I-12	Example of roof support and hole in sleeves	
Figure I-13	Example of roof support and noie in sleeves Example of calculated liquid level in rim space relative to the reference point	. 55/
Figure I-14	(see Figure I-6)(see Figure I-6)	527
Figure I-15	Typical layout of roof platform and points where loads from this platform	. ၂၁/
i iguie 1-13	are to be introduced into the roof plates and into the roof supporting structure.	520
F:		
Figure I-16	Example local line load	. 540

List of Tables

Table 2-1	Recommended type of fixed roof for tanks of different sizes	13
Table 4-1	General internal corrosion rates (typical (mm/year)) for uncoated tanks	33
Table 5-1	Available norm versions of API 12C and API 650	55
Table 5-2	Record sheet for fitness for purpose analysis	58
Table 5-3	Number of vertical scan lines	69
Table 8-1	"Standard" design pressures and vacuum values in mbar	123
Table 8-2	Joint efficiencies	128
Table 11-1	Weld efficiency factors	181
Table 11-2	Material resistance against HCs/UV light and fire retardation properties	196
Table 12-1	Minimum design thickness of shell nozzles with reinforcing plates	214
Table 12-2	Minimum design thickness of roof nozzles with reinforcing platesplates	214
Table 12-3	Minimum design thickness of roof and shell nozzles with	
	diameters < 80mm without reinforcing plates	215
Table 15-1	Frequency of monitoring relative to filling stages	240
Table 17-1	Guide to risk-based approach	248
Table 17-2	Cost comparison example	250
Table 17-3	Relationship between probability factor ζ and probability rating	264
Table 17-4	Relationship between consequence factor and rating	264
Table 17-5	Determining risk rating	264
Table 17-6	Value assigned to confidence rating initial RBI assessment	
	factor K from risk rating	266
Table 17-7	Example of preventative tasks	280
Table 17-8	Table Early Life Failure	284
Table 17-9	Relation ETBF, reliability and failure finding interval	288
Table B-1	Inspection frequencies	311
Table B-2	External routine visual inspection checklist	316
Table B-3	In-service tank inspection checklist	317
Table B-4	Out-of-service tank inspection checklist	323
Table C-1	Overlength of insert plates	375
Table C-2	Typical coating requirements for storage tanks	379
Table C-3	Typical coating systems for storage tanks - replaced plates	380
Table C-4	Typical coating systems for storage tanks: repair of coated surfaces	381
Table C-5	Typical coating requirements for storage tanks relative to stored product	383
Table D-1	Minimum shell coarse thicknesses	386
Table D-2	Minimum thickness from stability calculations	386
Table D-3	Acceptable minimum thicknesses under hoop stress conditions	389
Table D-4	Minimum thickness from buckling calculations	390
Table D-5	Venting capacities for different orifice diameters	395
Table D-6	Categorisation of fixed roof tanks	395

Table D-7	Calculated temperature drops	396
Table D-8	Sample calculation data	397
Table D-9	Supported roof area	404
Table E-1	Typical failure modes for bottom and shell	416
Table E-2	Typical failure modes for roof, fixings and other parts	417
Table E-3	Probability rating	426
Table E-4	Examples of main functionalities per component	458
Table E-5	Determination of initial estimated frequency	459
Table E-6	Risk Assessment Matrix (RAM) for the RCM-methodology	460
Table E-7	Inspection intervals in relation with availability and ETBF	463
Table E-8	"In-service" maintenance tasks: Foundation shoulder	474
Table E-9	"In-service" maintenance tasks: External tank shell	474
Table E-10	"In-service" maintenance tasks: Floating roof	476
Table E-11	"In-service" maintenance tasks: Rolling ladder	480
Table E-12	"In-service" maintenance tasks: Rim seal	481
Table E-13	"In-service" maintenance tasks: Instrumentation	484
Table E-14	"Out-of-service" maintenance tasks: Tank Foundation	486
Table E-15	"Out-of-service" maintenance tasks: Tank bottom	490
Table E-16	"Out-of-service" maintenance tasks: Internal tank shell	492
Table E-17	"Out-of-service" maintenance tasks: Floating roof	493
Table E-18	"Out-of-service" maintenance tasks: Rim seal	495
Table E-19	"Out-of-service" maintenance tasks: Instrumentation	496
Table E-20	"Out-of-service" maintenance tasks: Bunded area, bund walls and compound	497
Table F-1	Reduction values in allowable stresses and in Young's Moduli for EN materials	499
Table F-2	Reduction values in allowable stresses for ASTM materials with different	
	values of the minimum specified Yield Strength	500
Table F-3	Reduction values in Young's Moduli for ASTM materials	500
Table I-1	Evaluation of appearing stresses and their combinations with the	
	allowable stresses against the above-mentioned codes	522
Table I-2	Joint efficiency factors according to BS 2654, EN 14015 and this Publication	522
Table I-3	Design stresses according to PD 5500, applicable for S275 material	
	according to EN 10025	523
Table I-4	Allowable stresses and allowable stress combinations for S275 material	
	according to EN10025	523
Table I-5	Typical values of reduction of thicknesses of flanges and webs of profiles	
	based on allowable manufacturing tolerances	529
Table I-6	Allowable stresses in accordance with this publication for S275 material	
	acc. to EN 10025	529
Table I-7	Allowable stresses and allowable stress combinations in acc. with	
	this Publication for S275 material according to EN 10025	529