TankAssessor ${ }^{\text {TM }}$ - Entry Criteria
Industrial route: Typically 5 years' experience consistently working in inspection \& maintenance of storage tanks (in excess of 150 m 3), plus ability to deal with scientific formulae and calculations

OR
Academic route: Engineering Degree (e.g. BSc) from a recognised university, plus a minimum of 1 years' experience consistently working in inspection \& maintenance of storage tanks (in excess of 150m3), plus ability to deal with scientific formulae and calculations.

TankAssessor ${ }^{\text {w" }}$ - Typical Calculations

The following are examples of the kind of calculations / formulae covered in the TankAssessor ${ }^{\text {TM }}$ course and may be encountered in the examinations (note: this is an illustration, not a test):

Transpose the actual height ' h ' of each shell course to an equivalent height ' H_{e} ' of thickness ' $t_{\text {min }}$ ' using the following equation:

$$
H_{e}=h \sqrt{\left(\frac{t_{\min }}{t}\right)^{5}}
$$

Where:

$$
\begin{array}{lll}
t_{\min } & = & \text { corroded thickness of the top course (in } \mathrm{mm} \text {) } \\
t & = & \text { corroded thickness of each shell course (in mm) } \\
h & = & \text { actual height of each shell course (in } \mathrm{m}) \\
H_{e} & = & \text { transposed height of each shell course (in m) }
\end{array}
$$

Calculate transformed shell height: $H E=\sum H_{e}$
Note: The transformed shell has a uniform thickness ' $t_{\text {min }}$ ' and a height ' H_{e} ' which provides equivalent stability as the actual shell with variable thicknesses and a top course thickness equal to ' $t_{\text {min }}$ '.

Calculate factor ' K using the following equation:

$$
K=\frac{9500}{3.563 V w^{2}+580 V a}
$$

Calculate maximum permitted spacing ' H_{p} ' of stiffner rings on transformed shell in (m):

$$
H_{p}=K \sqrt{\left(t_{\min }^{5} / D^{3}\right)}
$$

The following formula is widely used to calculate the maximum permissible sag:
$f_{\max }=\frac{d}{100} \sqrt{\left(\frac{f_{0} * 100}{D}\right)^{2}+3280 * \frac{R e}{K}}$

CompeTank ${ }^{\circledR}$ Scheme

Where:
$\mathrm{f}_{\text {max }}=$ maximum allowed sag of deformed section in bottom in mm
d = deformed section in bottom in mm
$\mathrm{f}_{0}=$ original sag in bottom since construction (either cone up or cone down) in mm
D = diameter of tank in mm
Re $=$ Yield strength of bottom plate materials with maximum of $240 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{K}=$ Young's modulus of steel at storage temperature in $\mathrm{N} / \mathrm{mm}^{2}$

Assess the value from the formulae stipulated below:

$$
H_{p}=K \sqrt{\frac{t^{5}}{D^{3}}}=\frac{t^{2.5}}{D^{1.5}}
$$

And

$$
K=\frac{95000}{\left(3.563 V_{w}{ }^{2}+580 V_{a}\right)}
$$

Use acalculator to assess the values within the graphic shown below:

If you find the above questions or formulae difficult, you should consider getting some tuition in scientific formulae and calculations, or use of a scientific calculator, prior to attending TankAssessor ${ }^{\text {™ }}$.

